从调制选择到多安滕纳策略,由于物理层的连续决策而实现了通信,并且每个决策都会影响通信系统的性能。未来的通信系统必须包括广泛的功能,因为它们将涵盖各种设备和应用。常规的物理层决策机制可能无法满足这些要求,因为它们通常是基于不切实际和过度简化的假设,这些假设导致复杂性和效率之间的权衡。通过利用过去的经验,学习驱动的设计是有希望的解决方案,即使在特殊情况下也能够快速响应。相应的设计解决方案应按照学习驱动的范例的线发展,这些范式提供了更多的自主性和鲁棒性。必须通过考虑现实世界系统的事实而不限制假设来实现这种进化。在本文中,提出了物理层中的共同假设,以突出它们在实用系统中的差异。作为解决方案,通过考虑实施步骤和挑战来检查学习算法。此外,通过使用软件定义的无线电节点进行实时案例研究来讨论这些问题,以证明潜在的性能改善。提出了一个网络物理框架,以纳入未来的补救措施。
translated by 谷歌翻译
在本文中,我们介绍了一个单像素的到达方向(DOA)估计技术,利用了曲线图注意网络(GAT)的深度学习框架。使用编码孔径技术实现物理层压缩,探测使用一组时空不连贯模式探测入射在孔径上的远场源的光谱。然后将该信息进行编码并压缩到编码孔径的信道中。编码孔径基于元表面天线设计,并且它用作接收器,展示单通道并替换基于传统的多通道光栅扫描基于DOA估计的解决方案。 GAT网络使得压缩DOA估计框架能够直接从使用编码孔径获取的测量来学习DOA信息。该步骤消除了对额外的重建步骤的需求,并显着简化了处理层以实现DOA估计。我们表明所提出的GAT集成单像素雷达框架即使在相对低的信噪比(SNR)水平下也可以检索高保真DOA信息。
translated by 谷歌翻译
直接到 - 卫星(DTS)通信最近已获得支持全球连接的物联网(IoT)网络的重要性。但是,地球周围密集部署的卫星网络相对较长的距离会导致高路径损失。此外,由于必须部分在物联网设备中进行诸如光束成型,跟踪和均衡之类的高复杂性操作,因此硬件复杂性和对物联网设备的高容量电池的需求都会增加。可重新配置的智能表面(RISS)具有增加能源效率并在传输环境而不是物联网设备上执行复杂的信号处理的潜力。但是,RIS需要级联通道的信息,以更改事件信号的阶段。这项研究将试点信号评估为图形,并将此信息纳入图表网络(GATS),以通过试点信号来跟踪相位关系。提出的基于GAT的通道估计方法研究了DTS IoT网络的性能,以解决不同的RIS配置,以解决具有挑战性的通道估计问题。结果表明,与常规深度学习方法相比,在变化条件下,拟议的GAT均表现出更高的性能,并且在变化的条件下具有更高的鲁棒性,并且计算复杂性较低。此外,根据提议的方法,在通道估计下具有离散和不均匀相移的RIS设计研究了位错误率性能。这项研究的发现之一是,必须在RIS设计期间考虑操作环境的渠道模型和通道估计方法的性能,以尽可能利用性能改进。
translated by 谷歌翻译
将推动下一代通信技术,以陆地网络与含有高空平台站和低地球轨道卫星的MEGA-星座的陆地网络(NTNS)的合作。另一方面,人类已经开始在一条漫长的道路上建立在其他行星上的新栖息地。这认为NTN与NTNS具有深度空间网络(DSN)的合作。在这方面,我们提出了使用可重构的智能表面(RISS)来改善和升级这一合作,因为它们与空间的操作环境的尺寸,重量和电力限制完全匹配。通过针对挑战,用例和公开问题来提出RIS协助非陆地和行星通信的全面框架。此外,通过仿真结果讨论了环境效应下RIS辅助NTN的性能,例如太阳闪烁和卫星阻力。
translated by 谷歌翻译
Recent work has shown that fine-tuning large pre-trained language models on a collection of tasks described via instructions, a.k.a. instruction-tuning, improves their zero and few-shot generalization to unseen tasks. However, there is a limited understanding of the performance trade-offs of different decisions made during the instruction-tuning process. These decisions include the scale and diversity of the instruction-tuning benchmark, different task sampling strategies, fine-tuning with and without demonstrations, training using specialized datasets for reasoning and dialogue, and finally, the fine-tuning objectives themselves. In this paper, we characterize the effect of instruction-tuning decisions on downstream task performance when scaling both model and benchmark sizes. To this end, we create OPT-IML Bench: a large benchmark for Instruction Meta-Learning (IML) of 2000 NLP tasks consolidated into task categories from 8 existing benchmarks, and prepare an evaluation framework to measure three types of model generalizations: to tasks from fully held-out categories, to held-out tasks from seen categories, and to held-out instances from seen tasks. Through the lens of this framework, we first present insights about instruction-tuning decisions as applied to OPT-30B and further exploit these insights to train OPT-IML 30B and 175B, which are instruction-tuned versions of OPT. OPT-IML demonstrates all three generalization abilities at both scales on four different evaluation benchmarks with diverse tasks and input formats -- PromptSource, FLAN, Super-NaturalInstructions, and UnifiedSKG. Not only does it significantly outperform OPT on all benchmarks but is also highly competitive with existing models fine-tuned on each specific benchmark. We release OPT-IML at both scales, together with the OPT-IML Bench evaluation framework.
translated by 谷歌翻译
Traditional approaches to RL have focused on learning decision policies directly from episodic decisions, while slowly and implicitly learning the semantics of compositional representations needed for generalization. While some approaches have been adopted to refine representations via auxiliary self-supervised losses while simultaneously learning decision policies, learning compositional representations from hand-designed and context-independent self-supervised losses (multi-view) still adapts relatively slowly to the real world, which contains many non-IID subspaces requiring rapid distribution shift in both time and spatial attention patterns at varying levels of abstraction. In contrast, supervised language model cascades have shown the flexibility to adapt to many diverse manifolds, and hints of self-learning needed for autonomous task transfer. However, to date, transfer methods for language models like few-shot learning and fine-tuning still require human supervision and transfer learning using self-learning methods has been underexplored. We propose a self-supervised loss policy called contrastive distillation which manifests latent variables with high mutual information with both source and target tasks from weights to tokens. We show how this outperforms common methods of transfer learning and suggests a useful design axis of trading off compute for generalizability for online transfer. Contrastive distillation is improved through sampling from memory and suggests a simple algorithm for more efficiently sampling negative examples for contrastive losses than random sampling.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
This paper describes Waymo's Collision Avoidance Testing (CAT) methodology: a scenario-based testing method that evaluates the safety of the Waymo Driver Automated Driving Systems' (ADS) intended functionality in conflict situations initiated by other road users that require urgent evasive maneuvers. Because SAE Level 4 ADS are responsible for the dynamic driving task (DDT), when engaged, without immediate human intervention, evaluating a Level 4 ADS using scenario-based testing is difficult due to the potentially infinite number of operational scenarios in which hazardous situations may unfold. To that end, in this paper we first describe the safety test objectives for the CAT methodology, including the collision and serious injury metrics and the reference behavior model representing a non-impaired eyes on conflict human driver used to form an acceptance criterion. Afterward, we introduce the process for identifying potentially hazardous situations from a combination of human data, ADS testing data, and expert knowledge about the product design and associated Operational Design Domain (ODD). The test allocation and execution strategy is presented next, which exclusively utilize simulations constructed from sensor data collected on a test track, real-world driving, or from simulated sensor data. The paper concludes with the presentation of results from applying CAT to the fully autonomous ride-hailing service that Waymo operates in San Francisco, California and Phoenix, Arizona. The iterative nature of scenario identification, combined with over ten years of experience of on-road testing, results in a scenario database that converges to a representative set of responder role scenarios for a given ODD. Using Waymo's virtual test platform, which is calibrated to data collected as part of many years of ADS development, the CAT methodology provides a robust and scalable safety evaluation.
translated by 谷歌翻译
There exists unexplained diverse variation within the predefined colon cancer stages using only features either from genomics or histopathological whole slide images as prognostic factors. Unraveling this variation will bring about improved in staging and treatment outcome, hence motivated by the advancement of Deep Neural Network libraries and different structures and factors within some genomic dataset, we aggregate atypical patterns in histopathological images with diverse carcinogenic expression from mRNA, miRNA and DNA Methylation as an integrative input source into an ensemble deep neural network for colon cancer stages classification and samples stratification into low or high risk survival groups. The results of our Ensemble Deep Convolutional Neural Network model show an improved performance in stages classification on the integrated dataset. The fused input features return Area under curve Receiver Operating Characteristic curve (AUC ROC) of 0.95 compared with AUC ROC of 0.71 and 0.68 obtained when only genomics and images features are used for the stage's classification, respectively. Also, the extracted features were used to split the patients into low or high risk survival groups. Among the 2548 fused features, 1695 features showed a statistically significant survival probability differences between the two risk groups defined by the extracted features.
translated by 谷歌翻译
Deformable image registration is a key task in medical image analysis. The Brain Tumor Sequence Registration challenge (BraTS-Reg) aims at establishing correspondences between pre-operative and follow-up scans of the same patient diagnosed with an adult brain diffuse high-grade glioma and intends to address the challenging task of registering longitudinal data with major tissue appearance changes. In this work, we proposed a two-stage cascaded network based on the Inception and TransMorph models. The dataset for each patient was comprised of a native pre-contrast (T1), a contrast-enhanced T1-weighted (T1-CE), a T2-weighted (T2), and a Fluid Attenuated Inversion Recovery (FLAIR). The Inception model was used to fuse the 4 image modalities together and extract the most relevant information. Then, a variant of the TransMorph architecture was adapted to generate the displacement fields. The Loss function was composed of a standard image similarity measure, a diffusion regularizer, and an edge-map similarity measure added to overcome intensity dependence and reinforce correct boundary deformation. We observed that the addition of the Inception module substantially increased the performance of the network. Additionally, performing an initial affine registration before training the model showed improved accuracy in the landmark error measurements between pre and post-operative MRIs. We observed that our best model composed of the Inception and TransMorph architectures while using an initially affine registered dataset had the best performance with a median absolute error of 2.91 (initial error = 7.8). We achieved 6th place at the time of model submission in the final testing phase of the BraTS-Reg challenge.
translated by 谷歌翻译